Hilbert series of invariants, constant terms and Kostka-Foulkes polynomials

نویسندگان

  • Adriano M. Garsia
  • Nolan Wallach
  • Guoce Xin
  • Mike Zabrocki
چکیده

A problem that arose in the study of the mass of the neutrino led us to the evaluation of a constant term with a variety of ramifications into several areas from Invariant Theory, Representation Theory, the Theory of Symmetric Functions and Combinatorics. A significant by-product of our evaluation is the construction of a trigraded Cohen Macaulay basis for the Invariants under an action of SL n (C) on a space of 2n + n 2 variables.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kostka–foulkes Polynomials for Symmetrizable Kac–moody Algebras

We introduce a generalization of the classical Hall–Littlewood and Kostka–Foulkes polynomials to all symmetrizable Kac–Moody algebras. We prove that these Kostka–Foulkes polynomials coincide with the natural generalization of Lusztig’s t-analog of weight multiplicities, thereby extending a theorem of Kato. For g an affine Kac–Moody algebra, we define t-analogs of string functions and use Chered...

متن کامل

A Generalization of the Kostka-foulkes Polynomials

Combinatorial objects called rigged configurations give rise to q-analogues of certain Littlewood-Richardson coefficients. The Kostka-Foulkes polynomials and twocolumn Macdonald-Kostka polynomials occur as special cases. Conjecturally these polynomials coincide with the Poincaré polynomials of isotypic components of certain graded GL(n)-modules supported in a nilpotent conjugacy class closure i...

متن کامل

Ubiquity of Kostka Polynomials

We report about results revolving around Kostka–Foulkes and parabolic Kostka polynomials and their connections with Representation Theory and Combinatorics. It appears that the set of all parabolic Kostka polynomials forms a semigroup, which we call Liskova semigroup. We show that polynomials frequently appearing in Representation Theory and Combinatorics belong to the Liskova semigroup. Among ...

متن کامل

Hall-littlewood Vertex Operators and Generalized Kostka Polynomials Mark Shimozono and Mike Zabrocki

Kostka-Folkes polynomials may be considered as coefficients of the formal power series representing the character of certain graded GL(n)-modules. These GL(n)-modules are defined by twisting the coordinate ring of the nullcone by a suitable line bundle [1] and the definition may be generalized by twisting the coordinate ring of any nilpotent conjugacy closure in gl(n) by a suitable vector bundl...

متن کامل

Kostka–Foulkes polynomials and Macdonald spherical functions

Generalized Hall–Littlewood polynomials (Macdonald spherical functions) and generalized Kostka–Foulkes polynomials (q-weight multiplicities) arise in many places in combinatorics, representation theory, geometry, and mathematical physics. This paper attempts to organize the different definitions of these objects and prove the fundamental combinatorial results from “scratch”, in a presentation w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Mathematics

دوره 309  شماره 

صفحات  -

تاریخ انتشار 2009